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We derive an adaptive finite-element method for the numerical solu- 
tion of a one-dimensional, implicit, moving-boundary problem: The 
oxygen diffusion with absorption problem of Crank and Gupta. The 
method, which includes a moving grid and incorporates an iteration for 
the velocity of the moving boundary, produces good results over a 
range of parameters. We present numerical and graphical results in one 
dimension and indicate an extension of the method to two dimensions. 
0 1992 Academic Press. Inc. 

1. INTRODUCTION 

The oxygen diffusion with absorption problem [ 1,2], a 
moving-boundary problem which has inspired much inter- 
est among numerical workers in recent years, is concerned 
with the absorption and diffusion of oxygen in tumour 
tissue. In the first stage of the problem, oxygen diffuses into 
and is absorbed by the tissue until a steady state is attained. 
The oxygen in-flow boundary is then sealed, causing the gas 
content to be reduced to zero by the continuing absorption 
process. A non-dimensionalised mathematical formulation 
of the second stage of the problem in terms of the concentra- 
tion of oxygen, 24, is 

u, = u,, - 1, O<x<s(t), O<t< T, (1.1) 

u, = 0, x=0, O<t<T, (1.2) 

(1.3) 

u= i(l -x)2, 0 < x <s(O) = 1, t = 0. (1.4) 

The moving-boundary problem defined by ( 1.1 )-( 1.4) is 
closely related to Stefan problems (concerned with heating 

and melting), in which the dependent variable is tem- 
perature. The main difference between the current problem 
and Stefan problems is that the second equation of (1.3) is 
typically replaced by 

u, = -LS(t), x=s(t), 0-c t< T, (1.5) 

(where L is constant) in Stefan problems, thereby providing 
an explicit expression for S, the velocity of the moving 
boundary. An adaptation of the present numerical method 
to solve one-phase Stefan problems is outlined in Section 3. 

There are three factors which render ( 1.1 )-( 1.4) difficult 
to treat numerically: first, the initial data, (1.4), is inconsis- 
tent with the lixed-boundary condition, (1.2); second, there 
is no explicit expression for the velocity of the moving 
boundary; and third, this velocity becomes infinite in 
magnitude as the time, T, at which zero oxygen remains is 
approached. The first difficulty may be overcome by 
implementing a short-time analytic solution [ 11; however, 
the present numerical method exhibits no instability when 
started at the initial time. The other difficulties, which occur 
at the moving boundary, require special treatments, and we 
describe these in Section 3. 

Crank [3] reviews the numerous numerical methods that 
have been employed to solve the problem, (l.l)-( 1.4), to 
which there is no known analytic solution. We merely 
mention the more important contributions, including the 
original finite-difference method of Crank and Gupta [ 11, 
which incorporates Lagrangian interpolation formulae and 
a node-deletion algorithm. In their subsequent method [2], 
they perform interpolations using cubic splines and cubic 
polynomials, and use a grid which moves with the velocity 
of the moving boundary. Gupta [4] avoids the use of the 
interpolation techniques of Crank and Gupta [ 1, 21 by 
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implementing a Taylor expansion in both the space and 
time variables. Hansen and Hougaard [S] derive an 
integral-equation formulation for the position of the moving 
boundary and an integral formula for the concentration, 
solving using asymptotic and numerical techniques. The 
transformation of Landau [6], 

5 = x/Gt), (1.6) 

which maps the time-dependent domain 0 d x < s(t) onto 
the fixed region 0 < 5 $1, is included in the first method of 
Ferriss and Hill [7]; their second method involves the 
replacement of the moving-boundary conditions, (1.3) by 
the fixed-end condition 

u, =f(t), x=1, O<t<T, (1.7) 

where f is an unknown function which they determine. 
Berger et al. [S] solve the problem using the truncation 
method, a fixed-domain method in which negative solution 
values are truncated to zero. An important class of methods 
is that of variational inequalities, in which the original 
problem is reformulated as a fixed-domain problem and 
solved in an approximation space. These methods are 
considered by Baiocchi and Pozzi [9] and Elliott and 
Ockendon [lo]. 

Miller et al. [ll] solve the problem using an iterative 
finite-element method on an adaptive mesh, the number of 
nodes of which is automatically reduced in order to follow 
the inward motion of the moving boundary. A variable- 
time-step method is considered by Gupta and Kumar [12]: 
they select time increments which ensure that the moving 
boundary is located at a nodal point at each time level. 
Dahmardah and Mayers [13] express the concentration 
variable in terms of a Fourier series, which they truncate 
and then evaluate. The moving finite element method 
[14-161 is used by Moody [17] in his numerical solution 
of the problem. 

In the present work, we employ a finite-element method 
on a moving grid to solve the oxygen diffusion with absorp- 
tion problem, (1.1 t(1.4). The derivation of the method and 
its practical implementation are presented in Sections 2 
and 3. Section 4 contains numerical and graphical results 
and discussion. In Section 5, we draw our conclusions and 
suggest how the method may be extended to solve a two- 
dimensional version of the problem. 

2. NUMERICAL METHOD 

The proposed front-tracking method presented in this 
paper is a constrained form of the moving finite element 
method of Miller and Miller [ 141 and Miller [ 151, which is 
further analysed by Wathen and Baines [18] and Baines 

and Wathen [19]. In this section, we describe the method 
(designated the constrained moving finite element method) 
and derive the corresponding discretised set of linear 
equations. 

2.1. Derivation of the Method 

We seek a piecewise-linear approximant, u, to the true 
solution, U, of the problem, (l.l)-( 1.4), in the form 

N 

v = 1 ajo”,, 
j=l 

(2.1) 

where aj = u1 (t),j = 1, 2, . . . . N, are the numerical amplitudes 
corresponding to the time-dependent nodal positions 
sj=sj(t), j= 1, 2, . . . . N (collectively represented by the vec- 
tor s(t)); and aj = aj(x, s(t)), j = 1, 2, . . . . N, are the standard 
piecewise-linear basis functions of local compact support. 
A typical interior cc-type basis function is shown in Fig. 1. 

Differentiation of (2.1) with respect to time results in the 
expression 

vt= c {djaj+sjfij}, (2.2) 
j=l 

in which /Ij=flj(x, s(t), a(t)),j= 1, 2, . . . . N, are (in general) 
discontinuous piecewise-linear basis functions. It is shown 
in [ 14, 201 that 

B1 = -m312a17 XE (317 32) 

Pj = 
i 

-mj- ljZajf xE(S~-l,Sj) 

-mJ+ 1/2@j, 1 xE(Sj, sj+l) ' , tao, (2.3) 
j= 2, 3, . . . . N- 1 

where mj- 1,2 denotes the local slope of u in the element 
(s, _ i , sj). A typical interior P-type basis function is shown in 
Fig. 2. 

a,( x ,9(t) 1 

s,-,(t) sp sJt) 
FIG. 1. The basic function GI,. 
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and p,c x ) s(t), a(t) ) 

A 
-m,+,,e(t) - 

-m 

FIG. 2. The basis function 8,. 

Let 

NLZ= lbr--xx+ 111: (2.4) 

be the square of the global &-norm of the residual. Note 
that when u is piecewise linear, N,, of (2.4) is to be 
interpreted by considering v to be the limit of a sequence 
of smooth functions (see [ 14, 151). When applying the 
finite element method to fixed-boundary problems with 
Neumann boundary conditions, it is standard procedure 
to implement the Galerkin equations, which may be 
considered as being obtained by minimising N,, over 
Lj_l, j= 1,2, . . . . N. In our case, however, the right-hand 
boundary moves with a velocity which is determined only 
implicitly, although the value of the solution at this 
boundary is prescribed by the first of (1.3). We therefore 
minimise NLz not only over tij, j = 1, 2, . . . . N, but also over 
sN, and obtain 

(ML, 0, - U,y, + 1) = 0, i=l,2 N, , . . . . (2.5a) 

and 

(P N,U,--~,+ I>=@ (2.5b) 

where ( ., . ) is defined by 

in whichf, andf, are integrable functions. 
Substitution of u, from (2.2) into (2.5a), (2.5b) produces 

the semi-discrete system of equations 

F { <fiN, aj> Li;+ <flN? bj> j j  
j= 1 

- (B N? %Y -l)}=O. (2.6b) 

As /Ij is discontinuous at s, (see (2.3)), the integrals involv- 
ing /Ii are evaluated by splitting the interval [Is,-,, sj+ i] 
into [s,_ i, sj] and [s,, sj+ r], then considering the restric- 
tion of /I, (defined in (2.3)) to each of these subintervals. The 
inner products involving the u,, terms are evaluated using 
the usual integration-by-parts technique, in which the 
Neumann boundary conditions (( 1.2) and the second of 
(1.3)) are imposed weakly. 

The left-hand boundary is stationary and the right-hand 
one moves with a velocity which is determined through 
(2.6b). We eliminate the possibility of nodes colliding by 
constraining their velocities; namely, by specifying them in 
proportion to their nodal positions: 

sj = (Si/SN) s,, j=2,3 , . . . . N- 1. (2.7) 

Similar strategies for prescribing internal nodal velocities 
are considered by Lynch [20], Murray and Landis [21], 
and O’Neill and Lynch [22]. As the value of the moving- 
boundary velocity, S,, is not known a priori, we calculate 
its value using an iteration algorithm, details of which are 
presented in Section 3. 

The nodes, sj, j= 1, 2, . . . . N, are initially equi-spaced on 
the interval [0, 11; the corresponding initial amplitudes, uj, 
j = 1, 2, . . . . N, are obtained by minimising 

Ii 

N 

II 

2 

u- 1 ajccj OQxdl, t=o, 
j= 1 2’ 

over these variables, then inverting the resulting tridiagonal 
system using a standard solver. 

We now describe the formation of the discrete equations 
for the internal nodal amplitudes at each time level; in 
Section 3, we discuss the determination of the concentration 
at the moving boundary and the boundary velocity. 

2.2, Formation of the Discrete Equations 

The local-compact-support property of the a-type and 
p-type basis functions, together with (2.3), enables US to 
express (2.6a) (for an internal node s;) in the generic form 

A$ - A,,G = A,/A, - A,, 

since, for example, 

(2.8) 

Cai, aj> =fC(si-sj-l)+(Si+l-Si)l 
<ai, Pi> =$C(aj-ai-l)+ (ai+I-ai)l ’ 

i=2. 3. . . . . N- 1. (2.9) -(xi, U,X-~)}=~, i= 1, 2, . . . . N, (2.6a) ->-> , \ I 

j=l 
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Here, LI and s represent nodal values and positions respec- 
tively, and A, and A, denote differences. We now perform a 
splitting with weight 8 (0 < 0 d 1) to the A, quantities in 
(2.8) to yield 

A”LY+~-[CBA”,+~+(~-~)A~]S”+~ s 

= [OA”,+’ +(l-B)A:l/A:-A:, (2.10) 

where the IZ and n + 1 superscripts denote evaluation at 
the present time level and the next one, respectively. Alter- 
natively, we could apply the splitting technique to both A, 
and A, in (2.8); in practice, however, such an approach is 
slightly more complicated to implement and produces 
results which are virtually identical to those obtained using 
the present approach. 

The amplitudes are advanced in time by replacing their 
velocities in (2.10) by the Euler formula; namely, 

in which 

.n+H- a - [a”+’ - an]/At”+ ‘12, (2.11) 

At n f 112 = t” + I _ t” 

is the time increment. 

(2.12) 

Substitution of (2.11) into the equation of which (2.10) is 
the generic form produces 

Ty-, a:‘: + Tlay+ ’ + Tr+ 1 a::: 

=R:, i-2,3 ,..., N-l, (2.13) 

where TIP,, T:, TC,I, and Ry are coefficients which are 
independent of the unknown amplitudes. (Explicit expres- 
sions for these coefficients for general nodal positions and 
velocities appear in Appendix 1.) An equation similar to one 
of (2.13) is obtained for the amplitude, a; + ‘, at the fixed 
boundary. These N - 1 equations, together with a special 
equation for the concentration at the moving boundary 
(discussed in detail in the following section), form a 
tridiagonal system. 

In practice, we choose 

0= 5, (2.14) 

and so restrict our ensuing analysis to this particular case. 

3. TREATMENT AT THE MOVING BOUNDARY 

In this section we derive equations for the concentration 
at, and the velocity of, the moving boundary. We also 
describe the moving-boundary-velocity iteration procedure 
and the determination of time increments. 

Miller et al. [ 1 l] deduce from the two conditions, (1.3), 
at the moving boundary that the solution is locally 
quadratic, of the form 

24 = A[s(t) - x12, 1E R, (3.1) 

in a small neighbourhood of this boundary. Assuming this 
form to hold in the element closest to the moving boundary, 
they then exploit the local least-squares linear Iit to (3.1), 

g = -Ah N~1,2rX-S(f)+hN-,,21+~~h~~1,2 (3.2) 

(where h,_ ,,? denotes the length of the rightmost element). 
This straight line, (3.2), crosses the zero-concentration line 
at 

They deduce that the relationship 

1 aN= - TaNpI (3.3) 

holds in the last element, and this situation is depicted in 
Fig. 3. Following Miller et al. [ 111, we use (3.3) to model 
the homogeneous Dirichlet condition in (1.3). Note that this 
treatment is consistent with the projection of the initial 
function, as described in Section 2.1. 

The e-splitting technique, defined by Eq. (2.10), is also 
applied to (2.6b) to produce 

A” - B”[j”Nt_lj2 + 2j”,+ l/2] _ C” = 0. (3.4) 

Here, A”, B”, and C” are independent of nodal velocities but 
depend on unknown amplitudes. The velocity SnN+_‘y may be 

a 

FIG. 3. The assumed quadratic form of the analytic solution, u, and its 
least-squares tit, g, in the last element. 
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expressed in terms of S;+ ‘j2 using Eq. (2.7), enabling us to 
write 

S;+ ‘I= = (A” + Cn)/Dn, (3.5) 

where D” is a function of N and B”. (Forms of A”, B”, C”, 
and D” with the general 6 and arbitrary element lengths are 
stated in Appendix 2.) As A”, B”, and C” are functions of 
the unknown amplitudes anN+_ll and a”,” ‘, the following 
iteration algorithm is performed at each time level: 

(i) Estimate (Sk+ 1’2)0; set 1= 0. 

(ii) Determine (SF+ ‘I=),, i= 2, 3, . . . . N- 1. 

(iii) Form a linear system for (a”+ I),. 

(iv) Solve the system for (an+ I),. 

(v) Investigate the convergence of the iteration. 

(vi) If necessary, obtain (S”,+‘j2),+, and return to (ii), 
with 1 replaced by I + 1. 

(vii) Update the nodal positions. 

Owing to the negligible velocity of the moving boundary 
in its initial stages [S], we choose 

(S”,f 1’2)o = 0, n=o, 1, (3.6) 

in (i). At subsequent time levels, we obtain an initial 
estimate of the moving-boundary velocity as follows. The 
amplitudes at the moving boundary and penultimate node 
are predicted from 

a;+’ N [(Atn-1/2fAfn+1/2)a/n 

-At n + I/za,” ~ ’ ]/At” ~ 112, 

j= N- 1, N, (3.7) 

obtained by truncating Taylor expansions about time level 
n. The approximate amplitudes of (3.7) are then substituted 
into the expressions for A”, B”, C”, and D”, from which the 
boundary velocity is estimated using (3.5). 

Stage (ii) of the algorithm is provided for via (2.7), and 
(iii) is achieved using the scheme defined by (2.13), together 
with a similar equation for al + ’ and (3.3). The new 
amplitudes in stage (iv) are obtained using a standard 
tridiagonal-matrix solver. 

Having determined (a:+ ‘)[, i= 1, 2, . . . . N, on the Ith 
iteration at the n th time level, we form a corrected estimate 
of the moving-boundary velocity, (S”,’ ‘12);, using these 
amplitudes in (3.5). Convergence is then investigated 
numerically via 

I (j”,’ ‘l’)[ - (g;+ 9; 1 

<~max{J(S”,+“~),(, l}, (3.8) 

(which allows for a zero, or almost zero, boundary velocity) 
in which E is the iteration tolerance. If (3.8) is not satisfied 
then a further estimate for the velocity is provided for in 
stage (vi) by 

(S”,’ “2),+, = u(Sn,’ “2); + [l - w](s”,+ l/2)1, (3.9) 

where o is a relaxation parameter. In practice, at most two 
iterations are required with the choices 

&=5x10-4, 1 
w= -j, (3.10) 

the second iteration being required only during the later 
stages of the absorption/diffusion process. 

After obtaining a converged value for the moving- 
boundary velocity, we update the nodal positions in 
stage (vii), using the Euler formula (see (2.11)). 

As t approaches T, the time at which zero oxygen 
remains, the velocity of the moving boundary becomes very 
large in magnitude. For this reason, we restrict the time 
increment to preserve accuracy of the numerical solution, 
using the following treatment. At each time level, the 
difference between the new and present positions of 
the moving boundary is not permitted to exceed a given 
multiple of the present one; i.e., 

n+l 
Islv -s”,I <q$, (3.11) 

for some 4. A first-order Taylor expansion of (3.1 l), using 
the previous boundary velocity as an approximation to the 
present one, yields 

At”+ ‘I2 < &;/IS;- 1’21. (3.12) 

We take the number of elements into consideration by 
choosing 

0 = xl(N- 11, (3.13) 

where x is a specified accuracy, given here by 

x=0.1 (3.14) 

for a 10% level. The time increment at each time level, n, is 
assigned using 

At “+1~2=min{At,,,,s”,/[10(N-l) IS”,-“‘I]}, (3.15) 

in which 

At,,, = 10-4. (3.16) 

We conclude Section 3 by describing a modification of 
the present method which would admit its application to a 
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one-phase Stefan problem. A major difference between the 
two problems lies in the condition at the moving boundary: 
the Stefan problem typically includes (1.5) in place of the 
second of (1.3). A discretisation of this condition gives rise 
to an equation for i,; Eq. (2.6b), obtained by minimising 
NL2 over S,, is therefore redundant. It is generally easier to 
implement explicit conditions arising from (1.5) than it is 
to implement those arising from implicit conditions, such 
as the second of (1.3). The constrained moving finite 
element method may therefore be readily utilised to obtain 
numerical solutions to one-phase Stefan problems. 

4. PRESENTATION AND ANALYSIS 
OF RESULTS 

Numerical solutions of the oxygen diffusion with absorp- 
tion problem, ( 1.1 )-( 1.4), are obtained using the parameters 
0, E, w, x, and AL,,, ofEqs. (2.14), (3.10), (3.14), and (3.16). 
Robustness of the method is illustrated by obtaining infre- 
quent, negligible deviations in the numerical values when 
the iteration convergence tolerance, E in (3.10), is decreased 
by two orders of magnitude. 

In Fig. 4 we see numerical oxygen-concentration profiles 
at non-dimensional times of 0.00, 0.01, 0.05, 0.10, 0.15, and 
0.19 when solving with 21 nodes. The solid diamonds, 
joined by the linear segments, denote the nodal concentra- 
tions, which decrease with time. The minute initial and large 
final velocities of the boundary are apparent in Fig. 5, in 
which the variation of the position of the boundary with 
time is displayed. 

The nature of the problem is such that zero oxygen 
remains in the tumour tissue after a time T. Values of 
0.197050, 0.197424, and 0.197417 for T are obtained from 
1 l-, 21-, and 41-node solutions, respectively, suggesting a 
final time of approximately 0.19742 non-dimensional units. 
(In these three cases, the magnitudes of the moving- 
boundary position, moving-boundary velocity, and fixed- 
boundary concentration at the final time are 0( 10m-18), 

0.0 02 04 0.6 06 10 

Distance into Tumour Tissue 

FIG. 4. Numerical oxygen-concentration profiles at selected times. 

00 01 0.2 03 0.4 05 0.6 07 06 

Position of Moving Boundary 

FIG. 5. Variation of moving-boundary position with time. 

0( lo”), and 0( 10P3’), respectively.) Our value for the final 
time compares favourably with those of previous workers: 
0.1972ZO.1977, of Hansen and Hougaard [S]; 0.196CO.198, 
of Miller et al. [ll]; 0.19732 and 0.19734, of Gupta and 
Kumar [12]; and 0.197434, of Dahmardah and Mayer{ 

c131. 
Tables I and II respectively contain the numerical values 

of Dahmardah and Mayers [13] (which are generally 
considered to be the most accurate available) for the 
moving-boundary position and fixed-boundary oxygen 
concentration at selected times. Also included in the tables 
are the deviations from the values in [13] of those of the 
constrained moving finite element method when solving 
with 11, 21, and 41 nodes. 

With reference to Table I, we see that there is no devia- 
tion in the two sets of results up to and including a time of 
0.02. After this time, the results of the constrained moving 
finite element method exceed the comparison values 
slightly, then pass through a minimum deviation between 
0.16 and 0.18. The present method then produces values 
which are less than those of Dahmardah and Mayers [ 131 
until the final times. Generally, the deviations in moving- 

TABLE I 

Deviations in Computed Moving-Boundary Positions at Selected 
Times, as Compared with Those of Dahmardah and Mayers [ 133 

Deviation in position ( x 105) 
Position 

Time in 1133 11 Nodes 21 Nodes 41 Nodes 

0.0100 1.00000 
0.0200 l.OOtXKl 
0.0300 0.99991 
0.0400 0.999 18 
0.0500 0.99679 
0.1000 0.93502 
0.1200 0.87917 
0.1400 0.79894 
0.1600 0.68345 
0.1800 0.50133 
0.1900 0.34600 
0.1950 0.20845 
0.1960 0.16313 
0.1970 0.09305 
0.1972 0.06944 
0.1974 0.02782 

0 
0 

-11 
-64 

-144 
-420 
-420 
- 349 
-181 

194 
700 

1579 
2257 
6020 

0 0 
0 0 

-4 -1 
-18 -5 
-38 -10 

-106 -24 
- 105 -22 
-85 -15 
-39 0 

61 31 
124 47 
133 91 
135 127 
154 196 
181 271 
459 831 
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boundary position decrease on increase in the number of 
nodes for a fixed time; this is not the case, however, for the 
21-node and 41-node results after a time of 0.196. 

The deviations in concentration at the fixed boundary in 
Table II are, in general, much lower than their moving- 
boundary-position counterparts. These results behave in a 
similar manner to those in Table I, exhibiting a minimum 
deviation between 0.05 and 0.10. Note that the 21-node and 
41-node results are in excellent agreement with each other 
throughout, but especially so at later times (when the 
problem is at its most severe). 

When compared with the results in [ 131, our results are 
generally at least as accurate as those from any other 
method mentioned in this paper. The deviations in Tables I 
and II illustrate that the numerical results of the constrained 
moving finite element method are approximately second- 
order accurate with respect to the comparison values until 
a time of 0.19; after this time, the order is unreliable. The 
reduction in accuracy may be due to the fact that the 
(unknown) analytic solution can no longer be adequately 
approximated by a quadratic over the whole extent of the 
last element after a time of 0.19; in this case, a higher-order 
polynomial-fit may be more appropriate. With an assumed 
form of 

g=A[s(t)-xy, AER, PEN, (4.1) 

the condition corresponding to (3.3) is 

(P- 1) 
aN=-(2p+l)aN-l. (4.2) 

TABLE II 

Deviations in Computed Fixed-Boundary Concentrations at 
Selected Times, as Compared with Those of Dahmardah and 
Mayers [ 131 

Deviation in concentration ( x 10’) 
Concentration 

Time in [13] 11 Nodes 21 Nodes 41 Nodes 

0.0100 0.38716 
0.0200 0.34042 
0.0300 0.30456 
0.0400 0.27432 
0.0500 0.24769 
0.1000 0.14318 
0.1200 0.10913 
0.1400 0.07785 
0.1600 0.04882 
0.1800 0.02178 
0.1900 0.00902 
0.1950 0.00288 
0.1960 0.00169 
0.1970 0.00049 
0.1972 0.00027 
0.1974 0.00004 

-160 
-86 
-54 
-36 
-22 

15 
23 
31 
37 
43 
45 
44 
46 
43 

-39 -10 
-21 -5 
-13 -3 

-9 -3 
-5 -1 

4 1 
5 1 
7 1 
8 1 
9 1 
6 1 
2 1 
2 3 
0 1 
1 2 
1 2 

With a sufficiently large value of p, the inclusion of (4.2) in 
place of (3.3) may restore the second-order accuracy of the 
method after a time of 0.19. It may be advantageous to 
smoothly vary the boundary equation from (3.3) to 

1 
aN=- zaNpt (4.3) 

(which is the limiting form of (4.2) as p tends to infinity) as 
time increases from 0.19 to T. Of course, this approach 
would not be successful if (4.1) were distant from the correct 
form of the analytic solution in the vicinity of the moving 
boundary; for example, a more complicated polynomial, an 
exponential, or even an error function might be more 
appropriate. 

The c.p.u. times consumed on a Norsk-Data Nord 500 
mini computer when using 11, 21, and 41 nodes are 
approximately 8, 15, and 43 s, respectively. Although it is 
not generally possible to compare the speed of the con- 
strained moving finite element method with speeds of rival 
methods (as different computers were used), the authors are 
in a position to ascertain that the current method is far 
quicker than that of Miller et al. [ 111. 

5. CONCLUSIONS 

We have described a constrained form of the moving 
finite element method and applied it to the one-dimensional 
oxygen diffusion with absorption problem. The numerical 
results indicate that the method is second-order accurate 
almost everywhere, and the low c.p.u. times reveal an 
inexpensive solution technique. 

Current investigation consists of extending the numerical 
method to admit its application to a two-dimensional ver- 
sion of the problem, in which the second of (1.3) is valid in 
the normal direction at all points on the moving boundary. 
The algorithm of Section 3 will now include the solution of 
a linear system system of boundary velocities, obtained by 
applying (3.3) in the normal direction at each moving- 
boundarj.node. In this case, the value of aNp 1 will have to 
be determined using interpolation techniques. 

A future task will be to further modify the method so that 
it can be used to solve one- and two-dimensional Stefan 
problems. This work will be based on the discussion in 
Section 3. 

APPENDIX 1 

The generalised coefficients of Eq. (2.13) are 
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